Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Peter Sels1,2,3, Thijs Dewilde1, Dirk Cattrysse1, Pieter Vansteenwegen1

1KU Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium

2Logically Yours BVBA, Plankenberghstraat 112 bus L7, 2100 Antwerp, Belgium
e-mail: sels.peter@gmail.com, corresponding author

3Infrabel, Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

February 24, 2016
Table of Contents

1 Business Problem
2 Model
 - Objective function
 - Variability
 - Definitions
 - Constraints
3 Software Implementation
 - User Interface
 - Solver running times
4 Results
 - Antwerp-Central Original
 - Antwerp-Central Optimised, Non-Periodic
 - Antwerp-Central Optimised, Periodic
 - Antwerp-Central Both, Non-Periodic
 - Ghent Sint-Pieters Original
 - Ghent Sint-Pieters Optimised, Non-Periodic
 - Ghent Sint-Pieters Both, Non-Periodic
 - Comparative Overview
5 Conclusions & Future Work
Business Problem

Task

Belgian Infrastructure Management Company: Infrabel:
"Train Platforming Problem (TPP): platform and route as many trains as possible"

Objectives:
no conflicts in planning in stations, check robustness

Fixed:
infrastructure, train lines, halting pattern, arrival & departure times

Specifics:
- one busy day, morning peak hours, periodic/non-periodic
- (check current platforming +) create new ('optimised') one
Platforming = Mapping Trains on Infrastructure
In objective function:

- Minimize penalties
 - of assigning to fictive a platform and
 - of moving assignment from preferred (real) to non-preferred (real) platforms,
for both initial O_{INI} and for supplementary O_{SUP} train sets

$$
g(op_o,p) = \sum_{o \in O_{INI}} CF_{INI} \cdot f_o + CR_{INI} \cdot cr_o + \sum_{o \in O_{SUP}} CF_{SUP} \cdot f_o + CR_{SUP} \cdot cr_o. \quad (1)$$

where

- $\forall o \in O : f_o \equiv (o2p_o,p = pFICT)$
- $\forall o \in O : cr_o \equiv (o2p_o,p \neq pORIG_o)$

- uses fictive platform at a higher cost than real platform
- conservative optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (8, 4, 2, 1)$
- progressive optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (1, 1, 0, 0)$
Not in objective function:

- weighting of trains by importance (e.g. number of passengers)
- important (e.g. number of passengers) transfer concerns, placing two trains close together
- robustness against delays
Definitions: Movement & Occupation

Movement Definition:
- Train ‘IN/OUT movement’ specifies:
 - IN/OUT line
 - platform arrival time
 - platform departure time
- IN route: connects IN line to platform,
- OUT route: connects platform to OUT line.

Occupation Definition:
- platform ‘occupation’ specifies (bundles):
 - (list of) IN movement(s)
 - (list of) OUT movement(s)
 - e.g.: 1 IN movement, 2 OUT movements = train split
 - e.g.: 2 IN movements, 1 OUT movement = train merge
In / Not In Variability

In Variability:
- per occupation
 - one platform choice
- per movement
 - one route choice
 - (indirectly) one platform choice

Not in Variability:
- per line-platform combination: only 1 default routing allowed for now
- only fixed platform arrival/departure times
Constraints Requiring total Assignment

Per-Movement, Per-Occupation and Compatibility Constraints:

- For each occupation, exactly one platform has to be chosen:
 \[\forall o \in O : \sum_{p \in P} op_{o,p} = 1 \] (2)

- For each movement, exactly one route has to be chosen:
 \[\forall o \in O : \forall m \in M_o : \sum_{r \in R} mr_{o,m,r} = 1 \] (3)

- All movements in 1 occupation need to come together on 1 platform track
 \[\forall o \in O : \forall m \in M_o : mr_{o,m,r} \implies op_{m2o_m,r2p_r} \] (4)

- Via \(m2o_m \) function, movement-occupation membership is respected
- Via \(r2p_r \) function, route-platform connectivity is respected
Constraints Avoiding Conflicts

Inter-Occupation Constraints:

- no 2 extended occupations use equal platform tracks at any time

∀ \(o_0, o_1 \in O : \forall_{p_0=p_1} (p_0, p_1) \in (P_{o_0}, P_{o_1}) : \)

\[\text{o}_{o_0, p_0} \land \text{o}_{o_1, p_1} \implies \text{o}_{\text{sep}, o_0, o_1} \] \hspace{1cm} (5)

Inter-Movement Constraints:

- no 2 extended movements use dependent (equal or crossing) routings at any time

∀ \(m_0, m_1 \in M : \forall_{\text{dep}_{r_0, r_1}} (r_0, r_1) \in (R_{m_0}, R_{m_1}) : \)

\[\text{m}_{o_0, m_0, r_0} \land \text{m}_{o_1, m_1, r_1} \implies \text{m}_{\text{sep}, m_0, m_1} \] \hspace{1cm} (6)
Separation boolean definitions

Occupation Separation boolean definition:

\[
\forall o_0 \prec o_1 \quad [otLoLbC_{o_0}, otHiUbC_{o_0}) \cap [otLoLbC_{o_1}, otHiUbC_{o_1}) \neq \varnothing
\]

\[
o_0, o_1 \in O : obef_{o_0, o_1} \equiv (otHiV_{o_0} + dtS \leq otLoV_{o_1}) \quad (7)
\]

\[
obeo_{o_1, o_0} \equiv (otHiV_{o_1} + dtS \leq otLoV_{o_0})
\]

\[
osep_{o_0, o_1} \equiv (obeo_{o_0, o_1} \lor obef_{o_1, o_0}).
\]

Movement separation boolean definition:

\[
\forall m_0 \prec m_1 \quad [mtLoLbC_{m_0}, mtHiUbC_{m_0}) \cap [mtLoLbC_{m_1}, mtHiUbC_{m_1}) \neq \varnothing
\]

\[
m_0, m_1 \in M : mbef_{m_0, m_1} \equiv (mtHiV_{o_0} + dtS \leq mtLoV_{m_1})
\]

\[
mbef_{m_1, m_0} \equiv (mtHiV_{o_1} + dtS \leq mtLoV_{m_0})
\]

\[
msep_{m_0, m_1} \equiv (mbef_{m_0, m_1} \lor mbef_{m_1, m_0}),
\]

\[
(8)
\]
User Interface Parameters

![Leopard GUI: LEan Optimiser of Platforms And Routings including routing Dependencies](image)

- **Date**: 16/04/2013
- **From Hour**: 07:10
- **Up To Hour**: 08:50
- **Extract Macro Infrastructure From**: a371
- **Select Station**: BRUGGE[210]
- **Fix Station Movements**: fix
- **Mirror unmatched movements by turn-around time**: 5.0
- **Avoid routing conflicts also for Mirrored movements**: checked
- **Fixed train length in meter (-1 for actual length)**: 400
- **Draw Long Text for Movements**: unchecked
- **Mark and name times in occupations**: unchecked
- **Warn for (Real, Real)-dependent Route low reuse times**: Overlap, Too close, Quite close, Robust
- **Define warning level Upper Times (min)**: 0.0, 1.0, 2.0, 5.0
- **Warn for (Real,Fictive)-Route time overlaps**: Potential conflict
- **Popup Platfoming Plan for**: Original, Optimised, Both

FINAL Station Connectivity that Luks Routes will be checked against and rejected against in case of no match.
Table: Solver running times on a Xeon CPU E31240 Quad Core 3.3 GHz, comparing CPLEX v12.5.0.0 32 bit, XPRESS BCL v4.6.1 64 bit and Gurobi v5.6.3 64 bit

<table>
<thead>
<tr>
<th>Solver</th>
<th># Stations Optimally Solved in</th>
<th># Stations Suboptimally Solved in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1s</td>
<td>< 10s</td>
</tr>
<tr>
<td>CPLEX</td>
<td>526</td>
<td>8</td>
</tr>
<tr>
<td>XPRESS</td>
<td>528</td>
<td>5</td>
</tr>
<tr>
<td>Gurobi</td>
<td>533</td>
<td>3</td>
</tr>
</tbody>
</table>
Figure: Antwerp-Central original Assignment: 3 levels, some conflicts
Results

Antwerp-Central Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Antwerp-Central Opt. assignment, non-periodic: no conflicts, some unplaced trains
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Antwerp-Central Optimised, Periodic

Optimised Assignment, Periodic

Figure: Antwerp-Central Opt. assignment, periodic: no conflicts, some unplaced trains
Both Assignments, Non-Periodic

Figure: Antwerp-Central: comparing original and optimised assignments
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results
Antwerp-Central Both, Non-Periodic

Antwerp Station

Figure: Antwerp Station
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Ghent Sint-Pieters Original

Original Assignment

![Figure: Ghent Sint-Pieters original Assignment: some conflicts](image)
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Ghent Sint-Pieters Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Ghent Sint-Pieters Opt. assignment, non-periodic: no conflicts, some unplaced trains
Results

Ghent Sint-Pieters Both, Non-Periodic

Both Assignments, Non-Periodic

Figure: Ghent Sint-Pieters: comparing original and optimised assignments
Results

Ghent Sint-Pieters Both, Non-Periodic

Ghent Station

Figure: Ghent Station
Results

Comparative Overview

Comparing Original and Optimised Assignment KPIs

#platform	#UnplatformedOrig	#blueLine	#darkOrn	#lightOrn	#greenLin	RobustnessSc	#platformed	#Unplatformed	Opt	#blueLine	#darkOrn	#lightOrn	#greenLin	RobustnessSc	Both	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
23	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
6	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
33	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
87	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both
34	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Both

| 12241 | 813 | 752 | 1524 | 2245 | -8123 | 12894 | 4.75% | 95.25% | 1.65% | 98.35% | 253 | 0 | 707 | 1578 | 2409 | -4406 |

<table>
<thead>
<tr>
<th>h=bad=work to go</th>
<th>h=bad=good</th>
<th>h=good=bad</th>
<th>h=bad=bad</th>
<th>h=good=good</th>
<th>h=bad=bad=good</th>
<th>h=bad=good=good</th>
<th>h=good=good=good</th>
<th>h=bad=bad=good=good</th>
<th>h=bad=work to go=good</th>
<th>h=bad=good=work to go=good</th>
<th>h=good=work to go=good</th>
<th>h=bad=good=work to go=good=good</th>
<th>h=good=good=work to go=good=good</th>
<th>h=good=good=good=work to go=good=good</th>
</tr>
</thead>
<tbody>
<tr>
<td>12894</td>
<td>4.75%</td>
<td>95.25%</td>
<td>1.65%</td>
<td>98.35%</td>
<td>253</td>
<td>0</td>
<td>707</td>
<td>1578</td>
<td>2409</td>
<td>-4406</td>
<td>4.75%</td>
<td>95.25%</td>
<td>1.65%</td>
<td>98.35%</td>
</tr>
</tbody>
</table>
TPP Research and Integration

<table>
<thead>
<tr>
<th>publication</th>
<th>integrated: company</th>
<th>in tool(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[De Luca Cardillo(1998)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Delorme and Rodriguez(2001)]</td>
<td>SNCF</td>
<td>RECIFE FR</td>
</tr>
<tr>
<td>[Billionnet(2003)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Carey and Carville(2003)]</td>
<td>British Rail, UK</td>
<td></td>
</tr>
<tr>
<td>[Caprara et al.(2011)Caprara, Galli, and Toth]</td>
<td>RFI, IT</td>
<td></td>
</tr>
<tr>
<td>[Lusby et al.(2011)Lusby, Larsen, Ryan, and Ehrgott]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sels et al.(2014)Sels, Dewilde, Cattrysse, and Vansteenwegen]</td>
<td>Infrabel</td>
<td>Ocapı Leopard</td>
</tr>
</tbody>
</table>

Table: Comparing TPP Research & Integration
Conclusions & Future Work

Conclusions

- Leopard usable as check of current platform assignment
 - indicates all conflicts
 - indicates all robustness issues
- Leopard usable as generator of correct platform assignment
 - guarantees no conflicts
 - can have robustness issues, indicates them
- fast as a Leopard

Further Work

- roll-out with Infrabel planners
- avoid robustness issues
- weight trains per # passengers
- allow some variability of platform times
- allow multiple routes per line-platform combination
Questions

- Questions?
- sels.peter@gmail.com
- www.LogicallyYours.com/Research/
- www.LogicallyYours.com/Company/

